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come several intrinsic limitations of spectral methods,
allowing for the use of the latter in a wider context [5–8].The primitive variable formulation of the unsteady incompressible

Navier–Stokes equations in three space dimensions is discretized The most obvious application of spectral multidomain
with a combined Fourier–Legendre spectral method. A semi-implicit methods is related to the solution of partial differential
pressure correction scheme is applied to decouple the velocity from equations over complex geometries (i.e., geometries which
the pressure. The arising elliptic scalar problems are first diagonal-

cannot be trivially mapped in the standard [21, 1] square).ized in the periodic Fourier direction and then solved by a multido-
Another important feature of this class of algorithms ismain Legendre collocation method in the two remaining space coor-

dinates. In particular, both an iterative and a direct version of the the natural way in which they exploit the architectures of
so-called projection decomposition method (PDM) are introduced modern MIMD computers (including clusters of work-
to separate the equations for the internal nodes from the ones stations) paving the way for large scale simulations other-governing the interface unknowns. The PDM method, first intro-

wise accessible only to supercomputer users. In fact, theduced by V. Agoshkov and E. Ovtchinnikov and later applied to
spectral methods by P. Gervasio, E. Ovtchinnikov, and A. Quarteroni parallelization efficiency is extremely favourable to spec-
is a domain decomposition technique for elliptic boundary value tral multidomain methods: the ratio of computation time
problems, which is based on a Galerkin approximation of the to communication time is larger for this family of methods
Steklov–Poincaré equation for the unknown variables associated to

than for others. This is mainly due to the high order accu-the grid points lying on the interface between subdomains. After
racy provided by the spectral method combined with thehaving shown the exponential convergence of the proposed discret-

ization technique, some issues on the efficient implementation of fact that the discrete operators involve matrices not as
the method are given. Finally, as an illustration of the potentialities sparse as other ‘‘local’’ methods (i.e., finite differences,
of the algorithm for the numerical simulation of turbulent flows, finite element or finite volumes) [9].the results of a direct numerical simulation (DNS) of a fully turbulent

The present Navier–Stokes solution algorithm differsplane channel flow are presented. Q 1997 Academic Press

from already well established spectral domain decomposi-
tion methods (i.e., the spectral element method). The main

1. INTRODUCTION difference consists in the treatment of the elliptic kernels
arising after the application of a continuous semi-implicit

Spectral methods have been and still remain the method pressure correction scheme. Each scalar elliptic boundary
of choice for numerical simulations of fluid phenomena value problem is transformed in a set of analogous prob-
where accuracy plays a fundamental role. The projection lems over subdomains whose boundary values are provided
decomposition method, first introduced by [1], was later by an abstract equation on the interface between subdo-
applied to spectral methods [2]. mains. This procedure allows us to split the equations over

Their inherent high-order accuracy and low phase error two sets of geometrical elements: the subdomains them-
motivated the development and implementation of several selves, where the solution is approximated by a local Leg-
spectral-based direct numerical simulation (DNS) and endre polynomial basis in the framework of a collocation
large eddy simulation (LES) codes for the solution of tur- method; and the subdomain interfaces, where the trace of
bulent flows [3, 4]. Nevertheless, almost all these methods the solution is approximated through a Galerkin method
have been designed to be extremely efficient for very sim- using a set of special basis functions. Such a sharp subdivi-
ple geometries on supercomputers (highly vectorized sion introduces a very flexible tool that is able to deal
shared memory machines). On the other hand, domain with more general discretizations such as a nonconforming
decomposition methods are becoming viable tools to over- multidomain partition of the original computational do-

main. Work is in progress in this direction and it will be
the subject of a future publication.1 E-mail: pinelli@torroja.dmt.upm.es.
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The illustration of the present method will be divided 1
Dt

(Û 2 Un) 2
1

2Re
=2(Û 1 Un)

(4)

into two main parts. First, both the continuous and the
discrete versions of the algorithm are presented and vali-

5 2=pn 2
3
2

L(Un) 1
1
2

L(Un21) in Vdated in a two-dimensional framework; in the second part,
some algorithm enhancements, including fast direct solvers Û 5 G((n 1 1) Dt) on ­V
for the elliptic kernels and a Fourier three-dimensional
extension are presented. Finally, to prove that the final 1

Dt
(Un11 2 Û) 1

1
2

=(pn11 2 pn) 5 0 in Valgorithm is an effective tool for the numerical simulation
of turbulent flows, the results of a DNS of a fully turbulent = ? Un11 5 0 in V (5)
Poiseuille flow are presented and validated. Un11 ? n 5 G((n 1 1) Dt) on ­V,

where L(U) represents the advective term As (U ? =U 1
= ? (UU)), and n is the unity vector normal to the bound-2. TIME SPLITTING SCHEME
ary ­V.

The incompressible Navier–Stokes equations can be re- In the first step (4), a nonphysical intermediate velocity
formulated in nondimensional form written as field Û is computed: Û does not satisfy the incompressibility

condition. Then in the second step (5), Û is projected
onto the divergence free space to get a convenient velocity­U

­t
1

1
2

(U ? =U 1 = ? (UU)) 5 2=p 1
1

Re
=2U in V (1) approximation of Un11.

The scheme with the given boundary conditions is noth-
= ? U 5 0 in V (2) ing else than a second-order Crank–Nicholson Adams–

Bashforth scheme on the whole problem, with an O(Dt2)U 5 G on ­V (3)
deviation in the tangential direction to the boundary. In-
deed, the relation [11]

The advective terms have been considered in their skew-
symmetric formulation [10] to avoid dealiasing procedures Un11 ? t 5 U((n 1 1)Dt) ? t 2 D=(pn11 2 pn) ? t on ­V, (6)
while semiconserving the energy. In the above equations,
V is a reference domain in Rd, U is the velocity vector, p holds, t being the unitary vectors tangent to the boundary.
is the pressure, and G is a prescribed boundary vector By applying the divergence operator to (5), it turns out
function. Also, Re 5 udHd/n is the Reynolds number based that the projection step is equivalent to
on a reference velocity ud , a reference length Hd , and the
kinematic viscosity n.

=2(pn11 1 pn) 5
2
Dt

= ? Û in V with
­pn11

­n
5 0 on ­V (7)In Eq. (1) and (2) velocity and pressure are coupled

together by the incompressibility constraint, which makes
them difficult to solve. Classical procedures to overcome

U n11 5 Û 2
Dt
2

= (pn11 2 pn) in V. (8)this problem are provided by time splitting schemes [11,
12].

The basic idea consists in decoupling the computation Therefore, the selected time-stepping procedure leads to
of pressure and velocity at each time step. The terms associ- a cascade of scalar elliptic kernels (4), (7), to be solved
ated with the spatial derivatives appearing in Eq. (1) and at each time step. Namely, two (for the two-dimensional
(2) might be computed at old, new, or intermediate time equations) Helmholtz problems for the determination of
levels. Implicit treatment of the viscous terms allow us to the predicted velocity field and one Poisson problem for
overcome the most severe time step restriction when deal- the pressure need to be solved at each time step. It it then
ing with spectral methods [13] (i.e., Dt p Re/N4, N being clear that, in order to achieve a globally efficient algorithm,
the polynomial degree of the spectral discretization). The it is of paramount importance to tackle effectively the
particular splitting method that has been selected to ad- mentioned scalar problems.
vance in time the equations is based on the semi-implicit In the next sections the attention will be focused on the
pressure correction method developed by Van Kan [14]; way each scalar elliptic problem can be efficiently solved
the diffusive terms are treated with a Crank–Nicholson in the framework of a spectral multidomain discretization.
discretization while an Adams–Bashforth scheme is used
for the advective terms. The following formulae summarise 3. MULTIDOMAIN HELMHOLTZ SOLVER
the time discretized version of the adopted fractional step
scheme to advance the solution from tn 5 n Dt to tn11 5 To illustrate the method in a simple manner, only two

dimensional equations will be considered hereafter. The(n 1 1) Dt (the upper index refers to the time level),
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following problem, representative of one of the elliptic Let T denote the ‘‘trace operator’’ from H1
0(V) onto S,

defined asscalar problems mentioned in the previous section, is con-
sidered,

Tf 5 fuG ;f [ H1
0(V). (15)

2=2u 1 au 5 f in V
(9)u 5 0 on ­V, The T operator allows us to identify two closed mutually

orthogonal subspaces,
where a is a real constant $0, f [ L2(V), and V is an open
connected set V , R2; in particular, V 5 <M

i51Vi with Vi K ; ker(T) 5 hu0 [ H1
0(V) : Tu0 5 0j, (16)

is a closed rectangle having either common side or common
vertex with each neighbour; a is either equal to zero (e.g.,

where ker(T) is the kernel of operator T and its orthogonalfor the Poisson problem related with the pressure), or is
complement K' is defined asequal to 2/Dt Re (e.g., for each one of the momentum equa-

tions).
K' ; hũ [ H1

0(V) : l(ũ, v0) 5 0 ; v0 [ Kj. (17)Let us point out that the outlined conformal discretiza-
tion is not mandatory for the present method. In fact, as it

Therefore, the solution u [ H1
0(V) of problem (10) can bewill be shown, the present algorithm allows for a complete

uniquely decomposed asdecoupling of the solution between subdomains and inter-
face. This feature makes the algorithm highly flexible
allowing in principle both nonconformal partitioning of the u 5 u0 1 ũ, u0 [ K, ũ [ K'. (18)
original domain and use of hybrid discretizations (different
space discretizations in different regions of the computa- Since the restriction T0 of the operator T to K' is an
tional domain). isometric isomorphism between K' and S it follows that

[15]
3.1. Continuous Formulation

; ũ [ K' '! c [ S: ũ 5 T 21
0 c. (19)The equivalent weak formulation of (9) is [8]

find u [ H 1
0(V) such that

(10) It is not difficult to see that ũ satisfies the Helmholtz prob-
l(u, v) 5 ( f, v)L2(V) ; v [ H 1

0(V), lem 2=2ũ 1 aũ 5 0 in V, with ũuG 5 c. For such a reason,
the operator T 21

0 is usually termed as ‘‘harmonic exten-
where H1

0(V) is the real Hilbert space defined as sion’’ to H 1
0(V) of any function belonging to S [2]. Identity

(18) can be reformulated as

H 1
0(V) ; hu [ L2(V):

­u
­x1

[ L2(V)
(11) u 5 u0 1 T 21

0 c with u0 [ K; c [ S. (20)

and
­u
­x2

[ L2(V), uu­V 5 0j
Thus, problem (10) can be easily proven to be equivalent
to the set of the two following ones.

equipped with the scalar product
PROBLEM P1. Find u0 [ K such that

l(u, v) 5 E
V

(=u ? =v 1 auv) dV ;u, v [ H 1
0(V). (12)

l(u0 , v0 ) 5 ( f, v0)L2(V) ; v0 [ K. (21)

Following classical domain decomposition techniques,
PROBLEM P2. Find c [ S such that

problem (10) is decoupled into a set of problems within
each subdomain plus an additional problem at the inter-

l(T 21
0 c, T 21

0 z) 5 ( f, T 21
0 z)L2(V) ;z [ S. (22)face G,

Problem P1 is nothing else than the solution of M decou-G 5 (V\V0)\­V with V0 5 <M
i51Vi. (13)

pled elliptic problems with homogeneous Dirichlet bound-
ary conditions on both ­V and G.Let S be the space of the functions defined on G:

On the other hand, Problem P2 consists in finding the
harmonic extension (T 21

0 ) of a function c defined on the
S 5 hz u' v [ H1

0(V) : z 5 vuGj equipped with the norm interface G which guarantees a jump of the conormal deriv-
iz i 5 Inf hiviH1

0(V) : z 5 vuGj. (14) atives along G equal to the one induced by the solution
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u0(x, y) of Problem P1. In fact, by applying the Green Nx 2 1, 1 # l # Ny 2 1), and using discrete integration
by parts, we obtain from (24) the following equivalentformula to (22), we obtain
collocation statement (see, e.g., Quarteroni and Valli [8,
Chap. 6]):OM

i51
E

­Vi>G

­

­ni
(u0uV

i

1 ũuVi
) z dG 5 0 ;z [ S, (23)

2=2ui
0 1 aui

0 5 f at (x i
k , yi

l),
1 # k # Nx 2 1; 1 # l # Ny 2 1, (27)

where ni is the normal unit vector on ­Vi (directed out-
ward) and vuVi

denotes the restriction of the function v to ui
0 5 0 on ­Vi .

Vi . Equation (23) highlights that for the implementation
As concerns Problem P2, namely the solution of Equationof Problem P2 it is sufficient to provide basis functions
(23), let hji j, i 5 1, . . . , y, be a set of linearly independentdefined only along G (i.e., basis functions for S).
polynomials which constitute a dense basis for S. Due toThe introduction and definition of Problems P1 and P2
the character of the trace operator T0 it is possible torepresent the key point to completely decouple the solution
approximate any harmonic function in K' and particularlyof problem (10) into two pieces, u0 and ũ, leading to two
ũ asdifferent geometrical entities: u0 to the nodes internal to

the subdomains, and ũ to the nodes lying on the interfaces
between the subdomains. ũ 5 OK

k51
ak (T 21

0 jk). (28)

3.2. Discrete Formulation
Consequently, applying a standard Galerkin technique,Let PN denote the space of algebraic polynomials of
problem (23) can be approximated with the following setdegree #Nx with respect to the x variable and Ny with
of K algebraic equations,respect to the y one. Let, moreover, (xk, yl) (0 # k # Nx;

0 # l # Ny ) denote the (Nx 1 1) ^ (Ny 1 1) nodes of the
Gauss–Lobatto–Legendre integration formula (e.g., Davis OM

i51
E

­Vi>G
S ­

­n SOKk51
ak(T 21

0 jk)DD jhdG
(29)and Rabinowitz [16, 13]). We recall that x0 5 y0 5 21,

xNx
5 yNy

5 11 and L9Nx
(xk) 5 0, L9Ny (yl) 5 0 for all k

5 2 OM
i51

E
­Vi>G

­u0

­n
jhdG ; h 5 1, . . . , K.and l (1 # k # Nx 2 1, 1 # l # Ny2 1), where LN represents

the Nth Legendre polynomial. Correspondingly, let gkl de-
note the weights associated to the nodes (xk , yl) of the The previous set of algebraic equations (29) can be recast
above-mentioned integration formula. Then we look for a in matrix notation as
discrete function (i.e., Problem P1), u0 [ K, such that ui

0

; u0uV
i

[ P0,i
N , for each i 5 1 ? ? ? N with P0,i

N 5 hv [ PN(Vi )u Aa 5 b, (30)
vu­Vi 5 0j satisfying the generalised Galerkin problem,

where a 5 ak , k 5 1, . . . , K, is the vector containing the
lN(ui

0 , vi
0) 5 ( f, vi

0)i
N ; vi

0 [ P0,i
N , (24) unknown coefficients of the solution, and b 5 bk , k 5

1, . . . , K, contains the coefficient of the data in Eq. (29).
The matrix A is dense with entries a priori unknowns.where we have set

Nevertheless, Eq. (29) provides the tool to compute the
action of A over a vector a containing the Galerkin coeffi-
cients of the jump of the normal derivatives along the( f, vi

0)i
N 5 ONx

k50
ONy

l50
f(x i

k , y i
l) v i

0(x i
k , y i

l ) gi
kl (25)

interface G. Besides, the condition number of A can grow
like O(K), unless the basis hjkj is not properly chosen.

and To solve system (30), an iterative technique is therefore
recommended. To simplify the illustration of the present

lN(u i
0 , v i

0) 5 (=u i
0 , =v i

0 )i
N 1 a (u i

0 , v i
0)i

N. (26) algorithm, let us consider one generic iteration a j11 5
a j 2 a (Aa j 2 b) (e.g., the j th one) of the Richardson
iterative method:Since, (x i

k , y i
l) are the nodes in Vi corresponding to the

images of (xk , yl ) through the mapping: V R Vi , and
gi

kl 5 gkl ? meas(Vi )/meas(V), we have that (u, v)i
N repre- a j11

k 5 a j
k 2 a OM

i51
E

­Vi>G
(31)sents the Gauss–Lobatto–Legendre approximation to the

integral e
Vi

uv ds. In particular, choosing as test functions
vi

0 , the Lagrange polynomials of degree Nx ^ Ny associated S ­

­n SOKh51
a j

h T 21

0
jhD2

­u0

­nD jkdG, k 5 1 ? ? ? K.
with the internal Gauss–Lobatto nodes (x i

k , y i
l) (1 # k #
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From Eq. (31), it appears evident that at each iteration vier–Stokes equation) the efficiency of the procedure
adopted to solve the interface problem becomes a keyone evaluation of the normal derivative of the harmonic

function ũj 5 oK
h51 a j

hT 21
0 jh is required to compute the point for the efficiency of the whole algorithm. In this case

one can either rely upon construction of the inverse of Aactual value of the right-hand side of Eq. (31). If we set
g j 5 oK

h51 a j
h jh , we can first solve M independent discrete in a preprocessing stage using the given iterative procedure

(see Section 5), or one can build an efficient preconditionerHelhmoltz problems of the form: find ũ j,i [ PN such that
to accelerate the conjugate gradient algorithm. Here we
did not investigate the selection of an efficient one, but thelN(ũ j,i, vi

0) 5 0 ;vi
0 [ P0,i

N
family of preconditioners obtainable through the probing
technique of Chan and Keyes [18] seems to suit the actualũ j,i 5 g j at the GL nodes of ­Vi > G (32)
formulation of the interface problem. In fact, the probing

ũ j,i 5 0 at the GL nodes of ­Vi > V. method allows for generating small band preconditioners
(typically tridiagonal ones) containing a lumping of the

Then we compute the normal derivatives of ũ j,i on ­Vi > Shur complement A action onto the band of the precondi-
G to generate the integrands in (31). Finally, we replace tioner (i.e., the tridiagonal part). The combined use of
each integral with its Gauss–Lobatto approximation on optimal basis and probing techniques should provide an
each side of G. efficient preconditioner. In fact, the former makes the con-

In summary, the iterative scheme is advanced until con- ditioning number of A independent of the number of un-
vergence as follows: knowns on the interface, while the latter would reduce its

spectral radius. The use of this class of methods wouldA. Given:
become compulsory when dealing with real 3D problems

1. the coefficients bk of the jump of the normal deriva- where storage of the whole exact inverse of A soon be-
tive ­u0/­n along G, comes prohibitive.

2. the coefficients a0
k of a guess solution of ũ along G:

j 5 0 ( j being the iterations counter). 4. EXTENSION TO THE NAVIER–STOKES EQUATIONS
B. Compute:

As already mentioned, when the incompressible Navier–j 5 j 1 1;
Stokes equations are solved in the framework of a pressure1. the harmonic extension of the function defined
correction scheme (4), (7) with the diffusive part treatedalong G by its a j

k by solving (32);
implicitly, the time-advancing technique consists in the

2. the coefficient of the jump of the normal derivative recursive solutions of Helmholtz-like problems.
­ũj/­n along G. One of the most attractive features of the continuous

pressure correction scheme is the possibility of choosingC. Update the coefficient of the solution through a step
the same degree of approximation for both pressure andof (31).
velocity. Indeed, from our numerical experience it turnedD. Goto B until convergence of the ak’s.
out that with this technique there is no need to satisfy

Remark 1. Matrix A of Eq. (30) is symmetric because any form of compatibility condition (i.e., Brezzi–Babũska
it is obtained from discretization of a self-adjoint problem condition). Such a feature simplifies the multidomain im-
using same test and trial functions. This allows for the use plementation since pressure and velocity share the same
of a conjugate gradient scheme rather than a Richardson grid nodes on the interface, thus avoiding complicated
one (31). interpolation procedures. The two aforementioned fea-

tures make the global scheme very efficient and easy to im-Remark 2. The convergence rate of the conjugate gra-
plement.dient procedure strongly depends on the choice of the basis

When the projection decomposition algorithm is appliedhjij. For the present work the basis functions proposed
to achieve the solution of each scalar elliptic problem, atby Ovtchinnikov [17] have been used. These consistute a
the end of each time step the velocity field fails to benearly optimal basis, in the sense that the condition number
globally continuous in V, we simply have u [ L2(V). In-of system (30) is bounded by a constant independent of
deed, the projection step (8) updates the solenoidal veloc-K, where K is the dimension of the subspace of S generated
ity field trough a gradient of a scalar field, pn11 2 pn, whichby spanhjij, i 5 1, . . . , K. Details about the construction
is only C0(V), but not C1(V), as the normal derivatives canof such a set of optimal basis can be found in [2].
have jumps at the interfaces. Even though the spectral
collocation method guarantees an exponential decay of theRemark 3. When multiple solutions of Eq. (30) are

required (for example, in the case of nonstationary elliptic mismatching of the solenoidal velocity field at the inter-
faces, a coarse discretization might introduce numericalproblems like the heat equation or the incompressible Na-
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FIG. 1. H1(V) error for different domain partitions.

boundary layers at the interfaces, leading to catastrophic Lobatto (GL) nodes. Exploiting the Gauss quadrature
formula and the definition of the Lagrange polynomialsinstabilities.

To avoid such a problem it is sufficient to rely on a weak the final form of the updating reads as
collocation updating rather than on a strong one (more • for the internal nodes in [0, G[
details can be found in [8]). To make the point clear the
one-dimensional equation un11 5 û 1 dp/dx is considered

un11g1
j 5 û g1

j 1
dp
dx

g1
j ; g1

j being the jth GL quadratureapplied on an interval [0, L], split in two subintervals [0,
L] 5 [0, G] < [G, L]. The weak projection step will then

weight of interval [0, G[;read as

• for the internal nodes in ]G, L]EL

0
un11 Lakdx 5 EL

0
ũLakdx 1 EL

0

dp
dx

Lakdx, (33)

un11g2
j 5 û g2

j 1
dp
dx

g2
j ; g2

j being the jth GL quadrature
where the test functions are the already mentioned La-
grange polynomials Lak(x) constructed on the Gauss– weight of interval ]G, L];
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• on the interface node G the time step very small to make the time errors negligible,
the H1(V) norm of the error is measured against the num-
ber of points per direction per subdomain. Figure 1 displays

un11
G (g1

N 1 g2
1) 5 ûG (g1

N 1 g2
1) 1 Sdp1

dx
g1

N 1
dp2

dx
g2

1D. the results, together with the domain partitioning configu-
rations. Clearly, the error decreases exponentially fast as
the polynomial degree N is increased within each subdo-Such a procedure is of straightforward extension to a two-
main, testifying to a spectral behaviour. Of course, sincedimensional domain, and in this case it can also be ex-
the method can be considered as a spectral counterpart oftended to include the treatment of internal corners.
the finite element p version, increased accuracy is obtainedOne more comment is deserved by the treatment of
by increasing the order of the internal polynomials ratherthe convective terms of the Navier–Stokes equations. As
than by resorting to a further partitioning [20]. In fact,pointed out by Browning et al. [19], finite difference discret-
the last strategy would lead only to an algebraic rate ofization in a simple patching context might lead to inaccu-
convergence [21]. Table I summarises the same test forrate results or even numerical instabilities. This problem
the infinity norm of the error measured both for the inter-might be of paramount importance when dealing with di-
nal points and for the interface, showing how the error isrect numerical simulation (DNS) of turbulent flows in re-
uniformly distributed.gions where the viscosity plays a modest role. In the finite

Figure 2 highlights the clean passage of the pulse throughdifference case the problem is encountered because differ-
an internal corner; neither reflections nor spurious modesent grids display different dispersion properties that might
are detectable. Finally, as a test of accuracy of the wholeinduce partial reflection or cancellations of waves crossing
Navier–Stokes algorithm, the classical Taylor–Green ana-the interfaces. In the spectral case the extremely small
lytical solution of the two-dimensional equations has beenerrors associated with the end points guarantees the clean
considered. The exact solution readspassage of waves across the interface if enough resolution

is provided. To show evidence of the last statement, the
solution of a linear transport equation applied to a two- u(x, y) 5 2cos(fx) sin(fy)e2t/2f2

(35)
dimensional Gaussian pulse has been considered:

v(x, y) 5 sin(fx) cos(fy)e2t/2f2
(36)

p(x, y) 5 21/4 (cos(2fx) 1 cos(2fy))e2tf2
(37)­u

­t
1 u

­u

­x
1 v

­u

­y
2 k=2u 5 f(x, y) in V, u 5 uexact on ­V.

(34) on the domain V 5 (0, 2) 3 (0, 2). The following set of
boundary conditions are applied:

The diffusive coefficient k has been fixed to a very low
value (k 5 1028) and the forcing f(x, y) is selected to make • on the edges x 5 0 and x 5 2, homogeneous Dirichlet
uexact 5 e22[(x2u t)2

1(y2v t)2] the exact solution of the given conditions for u and homogeneous Neumann conditions
differential problem (i.e., to balance the diffusive term). for v.
The convective speed U 5 (u, v) has been set to (1/Ï2, • on the edges y 5 0 and y 5 2, homogeneous Dirichlet
1/Ï2) to keep into account eventual problems due to non- conditions for v and homogeneous Neumann conditions
grid aligned advection. The exact solution is imposed as for u.
the time-dependent boundary condition at the domain

The tests have concerned both time and space accuracy.(V 5 (1, 0) 3 (0, 1)) edges. The initial condition had a
Again, the latter has been measured, imposing an ex-quarter of the pulse inside the domain and the solution
tremely small value for the time step. A four-subdomainwas advanced in time until reaching the condition with
of equal surface configuration has been considered andthree-quarters of the pulse outside the domain. Keeping

TABLE I

Ly error Ly error Ly error Ly error
Number of points internal nodes interface nodes internal nodes interface nodes

per subdomain 4 subdomains 4 subdomains 9 subdomains 9 subdomains

5 3 5 8.1 3 1022 3.1 3 1022 1.6 3 1022 1.1 3 1022

7 3 7 7.9 3 1023 4.5 3 1023 4.1 3 1024 3.3 3 1024

10 3 10 3.5 3 1025 1.0 3 1025 7.4 3 1027 5.3 3 1027

15 3 15 4.1 3 1027 1.1 3 1027 5.9 3 1028 4.4 3 1028
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FIG. 2. Passage of the Gaussian pulse through the interface (left, time 5 T0; right, time 5 T0 1 DT).

the error has always been measured according with the problems involved in the PDM procedure, it is possible
to apply a diagonalization procedure [22]. The LegendreH1(V) norm. Table II, showing the results of different

polynomial degrees per subdomain, summarises the accu- collocation approximation to one of the mentioned subpro-
blems can be recast asracy measurements for one of the velocity components.

From the given results, spectral convergence of the solution
is quite evident. UD 1 DTU 2 aIU 5 F. (38)

In order to measure the time accuracy of the present
scheme, we considered the same test case with a prescribed where D is the collocated Lagrange second derivative
discretization in space (4 subdomains 14 3 14 nodes each) matrix acting on the subdomain internal nodes, U is the
sufficient to deliver full spatial accuracy. In Table III we unknown matrix ordered by rows, and F is a modified
present the relative L2(V) norm of the velocity error right-hand side matrix keeping into account the effects of
achieved after 1 time unit. From the results it turns out boundary values. In a first stage, the eigenvalues of D, its
that the adopted scheme is indeed second order in time left and right eigenvector system (ordered by columns)
for the velocity. and the respective inverses are determined:

5. EFFICIENCY ENHANCEMENTS OF THE E21
r D Er 5 L (39)

FRACTIONAL STEP ALGORITHM
E21

l DT El 5 L. (40)
The key to efficiency of any fractional step type of algo-

rithm is the solution procedure for the elliptic kernels aris- Matrices Er, El, E21
r , E21

l and the diagonal eigenvalue ma-
ing from the time discretization. In the present case both trix L are computed and stored in a preprocessing phase.
the solution of Helmholtz boundary value problems on Indicating with Û 5 E21

r U E1 and with F̂ 5 E21
r F E1 the

the whole domain V, and solutions of the same type of diagonalized problem,
differential subproblems over each subdomain Vi need to
be solved repetitively. LÛ 1 ÛL 2 aÛ 5 F̂, (41)

As concerns the latter, meaning the decoupled Dirichlet

is inverted and the final solution is recovered as

TABLE II U 5 ErÛE21
1 . (42)

Pol. degree (Nx 5 Ny) Total nodes H1 error for velocity

Having solved the eigenvalue problem in a preprocessing
6 144 4. 3 1024

stage, the recursive solution cost turns out to be of order
9 324 1. 3 1027

N 3 operations, N being the number of nodes used to dis-13 676 9. 3 10213

cretized each direction within a single subdomain.
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FIG. 3. Pouiselle flow grid configuration. On the right a view of a plane normal to the mean flow.

As concerns the solution of the whole domain V it is Successive inversions, through the iterative procedure out-
lined in Section 3, allow for constructing by columns thepossible to determine (always as a preprocessing proce-

dure) the inverse of the operator A (see (30)), handling the operator A21. The latter might, then, be considered as the
inverse of the Schur–Galerkin complement that, appliedinterface problem. With reference to Section 3, Problem P1

and the differential problem leading to the solution on the to the Galerkin coefficients of the computed normal deriv-
atives jumps (Problem P1), release the coefficients of theinterface P2 are reconsidered hereafter as
solution on the interface to guarantee zero weak normal
derivative jumps between subdomains. It is also remarkedAak 5 bk. (43)
that matrix A21 is symmetric because it is obtained from the
discretization of a self-adjoint problem (22). This propertyHere the ak’s refer to the Galerkin coefficients of the solu-

tion on the interface, and the bk’s are the Galerkin coeffi- leads to an evident storage and operation count reduction.
cients of the jump of the normal derivatives produced by
the solution of the M Problems P1.

Next the K problems

6. THREE-DIMENSIONAL EXTENSIONAak 5 dkj , k 5 1 ? ? ? K (44)

In this section, a generalisation of the method which
are considered, meaning problems with a jump of the nor- allows for the simulation of three-dimensional flows with
mal derivatives leading to a unitary Galerkin coefficient k one periodic direction is presented. For this class of flows
and zero values for all the other coefficients j ( j ? k). it is possible to take advantage of the classical Fourier

decomposition of the flow variables in the periodic direc-
tion. This choice leads to reduce all the three-dimensional

TABLE III
scalar differential problems in the physical space (momen-
tum equations and pressure correction equation) into aTime step size L2 error for velocity
sequence of two-dimensional scalar differential problems

0.1 4. 3 1022 in terms of the transformed variables. Once the two-dimen-
0.01 5. 3 1024

sional problems are set up, it is possible to take advantage
0.001 3. 3 1026

of the projection decomposition method to solve them ef-0.0001 5. 3 1028

ficiently.
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FIG. 4. Mean streamwise velocity near the wall. Actual computations (solid lines) plotted against logarithmic wall law (u/ut 5 2.5 log(y1) 1

5) (d).

In particular, let S2=̃2 1 k2 1
2Re
Dt Ddũ̂i,k 5 rh̃si,k , l 5 1, 2; (49)

u n
i (x, y, z) 5 ON/221

k52N/2
ũ n

i ,k (x, y)eIkz, i 5 1, 2, 3, (45)
2. Solve for p̃ n11

k the pressure correction (7) for k 5
2N/2, ..., N/2 2 1,

pn1(x, y, z) 5 ON/221

k52N/2
p̃ n11

k (x, y)eIkz, (46)

S2=̃2 1 k2Dp̃ n11
k 5 2

2
Dt

­ũ̂l,k

­xl
1

2Ik
Dt

ũ̂3,k 1S2
­2

­x 2
l
1 k2Dp̃ n

k ;
ûi(x, y, z) 5 ON/221

k52N/2
ũ̂ i,k (x, y)eIkz, i 5 1, 2, 3, (47)

(50)

and

(48)

3. For i 5 1, 2, 3, update the velocity field, as in (7),
for k 5 2N/2, ..., N/2 2 1,

dûi(x, y, z) 5 ON/221

k52N/2
dũ̂ i,k (x, y)eIkz, i 5 1, 2, 3,

u n11
i,k 5 ũ̂i,k 2

Dt
2 5

­(p̃ n11
k 2 p̃ n

k)
­xi

, if i 5 1, 2,

Ik.p̃ n11
k , otherwise.

(51)with I 5 Ï21. Applying the same methodology as for the
two-dimensional case, the three-dimensional algorithm can
be reformulated as

For every n 5 0, 1, ... (n being the time counter):
The subscript l has been introduced to stress the fact that
the collocated derivatives are computed in the two nonpe-1. For i 5 1, 2, 3, solve for ũ̂i,k (the predicted velocity

field) the momentum equations (4), for k 5 riodic directions only. The term rh̃si,k represents the kth
mode of the transform of the right-hand side of the ith2N/2, ..., N/2 2 1,
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momentum equation, and the operator =̃2 represents the internal corners as well. All the lengths are made nondi-
mensional with the channel half-height h, and the velocitytwo-dimensional laplacian operator in the two nonperiodic

directions. The treatment of the boundary conditions is is nondimensionalized with the centerline velocity Uc . With
this selection the Reynolds number Re 5 Uc h/n has beenstraightforward and does not introduce any supplemen-
fixed to the value of 3850 to be able to compare quantita-tary difficulty.
tively with the benchmark simulation of Kim et al. [24].
Following the minimal flow unit approach proposed by6.1. DNS OF A TURBULENT CHANNEL FLOW
Jiménez and Moin [23] the dimensions of the computa-

The DNS of low Reynolds numbers fully turbulent tional box are fixed to (2, 2, 0.8) in streamwise, normal to
Poiseuille flows can nowadays be considered a classical the wall (y-direction) and spanwise directions, respectively.
test case since the literature is very rich in both experimen- The grid configuration, together with a section normal to
tal and numerical results. This flow [23] might be consid- the mean flow, is displayed in Fig. 3). It consists of five
ered periodic both in stream and spanwise directions if subdomains; the dimensions of the first and of the last
the dimensions of the computational box are made large are selected to guarantee full capture of the wall sublayer
enough. In the present case the streamwise direction (x- (height of about 20 wall units). Each subdomain contains
direction) is taken as the Fourier one, while, to impose 20 3 20 nodes, while in the Fourier direction 36 modes
periodicity in the spanwise direction (z-direction) the edges are employed. The present case has been run on an IBM
of the subdomains normal to z are virtually joined to gener- RS6000 360H workstation with about 100 Mflops peak
ate an interface. This last procedure guarantees spanwise performance. The cpu required for each full-time iteration
weak periodicity of the solution in the sense that the deriva- is about 4.5 s when the inverse of the Schur–Galerkin
tives normal to the planes delimiting the computational complement is computed and stored in a preprocessing
box in z will only match in a weak sense. This procedure stage.

After having reached a statistical steady state some typi-allows us to test the effectiveness of the treatment of the

FIG. 5. Root mean square velocity fluctuations normalized with the wall shear velocity. Solid lines (present computation); symbols from Kim
et al. [24], respectively (s) streamwise velocity component fluctuations, (h) vertical velocity component fluctuations (v921/2

), and (e) spanwise velocity
component fluctuations.
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FIG. 6. Selected instantaneous vortex lines in a turbulent Pouiselle flow.

cal turbulent quantities have been measured to assess the its foundation is completely independent of both the nu-
merical discretization selected for each subdomain and ofquality of the obtained results. In Fig. 4 the obtained mean

velocity profile is plotted against the logarithmic wall (u/ the way the domain partition is made. This property should
then allow for relatively cheap DNS and LES of internalut 5 2.5 log (y1) 1 5). In Fig. 5 the computed turbulence

intensities are compared with the data of Kim et al. [24] flows with complex boundary shapes, such as turbulent
flows in rough channels. Indeed, the data from the channelat the same Reynolds number (Ret 5 180). As expected,

the results match perfectly the ones of [24] in the wall DNS simulation seems to confirm the viability of the pres-
ent algorithm to deal with complex turbulent flow configu-region, while, as an effect of the minimal flow unit ap-

proach, the velocity fluctuations are lower in the core re- rations. At the same time it should be stressed that the
capability of selecting the accuracy in determined flowgion [23]. Finally, in Fig. 6 the instantaneous distribution

of selected vortex lines highlights the presence of a typical regions might reveal that it is a powerful tool for resolved
large eddy simulations in complex configurations (i.e.,hairpin vortex within the computational box.

Apparently both the statistical quantities and the quali- when approximate wall conditions are not available).
tative behaviour of the flow field are unaffected by the
underlying domain partitioning. This indicates that the
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24. J. Kim, P. Moin, and R. Moser. J. Fluid Mech. 117, 133–171 (1987).12. A. Chorin, J. Comput. Phys. 2, 12 (1967).


